NUMERICAL METHOD OF SOLVING CERTAIN NONLINEAR
BOUNDARY-VALUE PROBLEMS IN HEAT AND MASS TRANSFER

S. S. Filippov UDC 536.242:532.542:518.1

The gist of a numerical method of solving certain nonlinear boundary-value problems
in heat~ and mass-transfer theory is illustrated on an example of a one-dimensional such
problem,

The numerical method which will be shown here is convenient for effectively solving certain bound-
ary-value problems in heat- and mass-transfer theory, namely problems reducible to a system of non-
linear differential equations of the elliptic kind. Such problems arise, for instance, in the analysis of
steady plain or magnetohydrodynamic flow of liquids through pipes and channels with variable transfer
coefficients. When the transfer coefficients inder laminar flow conditions are temperature-dependent,
for example, then the dynamic problem and the thermal problem are tied together and a boundary-value
problem involving a system of nonlinear equations can generally be solved by numerical methods only.

The gist of the proposed method can be explained on a simple example of a one-dimensional bound-
ary-value problem which is described by a system of two ordinary differential equations:

d du d dv
—A— F=0, —|B— G=0, 1
dx( a!x)+ dx( dx)+ =

where the real positive coefficients A and B may arbitrarily depend on x, u, and v, while F and G can de-
pend also on the derivatives u' and v'. On the interval xj, = x = xp we seek the solution to system (1) con-
strained by certain boundary conditions at points x1, and xg. We will solve this problem by the stabiliza-
tion method. System (1) is replaced by a system of parabolic partial differential equations:
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whose solution within the region [x1,, XR] X [t;, ©] must satisfy the same boundary conditions and certain
initial conditions. If there exists a solution to system (1) describing the stabilized process, then functions
u(x, t) and v(x, t) after a sufficientfly long time become steady and represent the sought solution o (1). In
order to solve system (2) by the method of finite differences, we introduce a space grid and a time grid
both generally nonuniform:

X=Xl <. LX< X, = Xp, Axy = X0 — X5

(3
O=t<th<<...<{,<..., A=t 1—1t,

and on them we construct an implicit difference scheme by the Tikhonov—Samarskii integrointerpolation
method [1].

We will establish the difference analog of the first equation in (2). Letting

§i=~£%~x"—“—- of = ! gu(x, ty) dx,
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we integrate the first equation of system (2) over the region [x;, x; . 4] X [t, tg ,]:
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According to (1], the integral is then replaced by its approximation:
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In order to ensure the stability of the difference equations, it is sufficient to select A >1/2 A =11is a
convenient choice, as it reduces the amowunt of computations).

The values p; of space derivatives at the grid nodes xj can be related to the average values ¢ of
function u, if we integrate the approximate equality

u(x) Az u(x;) + (e —x) p; =lu(x) —x;p;1 + pix {7)
with respect to x from x;_; to x; and from x; to xj , ;; the sought approximation of the derivative is
pi=—————~(Pi———(Pi—l , f=1Ilton—1., (8
& — &

Further considering only boundary conditions of the kind u(xg , t) = y, and u(xg, t) = ug for the derivatives
at the boundary points, we obtain
Qo — 4y Up Py

~ o= BT Ot (9)
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With a fixed k, expression (5) with (6), (8), and (9) yields the sought system of difference equations

Piyy—(Py+ Py Q) zp= —R,,
Pupizepr —(Popy + P+ Q)2 + P2y = —R,, i=lwon—2, (10)

- (Pn “+ Ppy - Qnet) 2ot + Prot Zag = — Ry,

where zj =<pli‘ +1(i =0, ..., n—1) and the coefficients are calculated according to the formulas
ARt Al k1
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Ry =Py uz.+ Qu (6 -+ mAtF);
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In order to remove the nonlinearity, we replace tj; ., by t in the expression

Bl )
Ai =A(xi, u(xi, tk—i-l), ZJ(Xi, fk..;.z))



and let

wy t) gk, + T8 gk ) = Tton—1 (12)

= E;—Ei1
with the same for v(xi, t). The quantities Fk, i.e., the values of function F(x,u, v,kux, vy) averaged over

“the region [xj, x; 1] X [tg, tk 4] will be replaced by the values of Fatx =4, u =¢i, and v = zpi R
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and the same for Vy-

The difference analog of the second equation in (2) we establish by the same procedure; it has the
form (10) for z; = zpl.l{“with appropriate obvious modifications in formulas (11)-(13).

Thus, the sought functions u and v have been approximated by their average values <p%{ and zpl; (at
time t = tg) over the intervals Axj. If <p!f and zp[i‘ are already determined, then the values of <p.k +1 and z,b.k+1
are found fromthe difference equations (10) solvable by the elimination method [2]. The elimination coef-
ficients are calculated as follows:

P; PW.+ R,
Vipr= ! y Wi =— Lt : , (14)
Pt + P (1—V)+Q 7 P+ P (1—V)+Q
i=0=-n—1,
where Vy =W, = 0, and then the solution
Z; = Vi+1 Zig1 + Wf—}—l’ i=n— 1, n—2, ..., 1, 0, where zﬂ-—-O. ' (15)

is found.

The stabilization method may be regarded as an iteration method. The iteration is convergent with
sufficiently small At steps, but a too small step will involve an unjustified longer computation time. On
the other hand, the magnitude of the Ax steps has little effect on the convergence of the iterations. In
setting up the algorithm on a computer, therefore, it is convenient to consider two stages, First, with
a space grid, one selects the time scale factors my and m, which will ensure convergence and a fast
stabilization (without loss of generality, one may let At =1). The following rule is useful for selecting m;
and my:

9t (16)

oF 1
— |, m; > max
0 ~ x

Then in order to obtain the required accuracy of the solution, one switches to a denser space grid.

It is guite evident that the implicit scheme (10)-(11), as an analog of system (2), represents a first-
order approximaﬁon. With an increasing number of nodes n in the space grid, therefore, the error de-
creases rather slowly (as n~1). The accuracy of the solution can be improved significantly by utilizing
the feasibility of a nonuniform x,-grid with the specific character of the sought solution properly taken
into consideration.

One absolute advantage of this stabilization method is the feasibility of checking both the existence
and the stability of the solution while the latter is constructed,

The procedure shown here can, without difficulty, be extended to two-dimensional problems (e.g.,
in using the method of variable directions [3] with respect to orthogonal coordinate axes).
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An application of this method in the problem of fluid flow with variable transfer coefficients through
an MHD channel [4] has demonstrated its great advantages over other earlier methods used for solving this
problem [5]. For instance, this method is much more economical and accurate than the known method of
coupled equations [6]; another important feature of this method is its effectiveness in solving the problem
when the coefficients of the lower-order derivatives are small. Thus, it has been possible to obtain very
accurate solutions to the said problem in [4], with the Hartmann number and the nonisothermality factor by
a few orders of magnitude higher than would have been possible by the method of coupled equations.
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